Sistemas Duplex para transmisión: LTE-FDD y LTE-TDD

FDD (Frecuency Division Duplex) es un esquema de transmisión y recepción de señales, este sistema permite una comunicación full duplex utilizando dos frecuencias diferentes, una para el enlace descendente y otra para el ascendente, manteniendo una banda de separación entre dichas frecuencias con la finalidad de no traslapar los canales, esto hace que la eficiencia espectral de FDD no sea muy buena. Sin embargo, una de las ventajas de este esquema de multiplexación es que no introduce retardos ni latencia adicional.

Por otro lado, TDD (Time Division Duplex) es otra técnica de multiplexado para comunicaciones que utiliza un solo canal, o frecuencia, para la transmisión de información, en este caso la transmisión y la recepción se realiza por la misma frecuencia pero con diferencias de tiempo y una separación temporal entre los dos sentidos de la comunicación, haciendo más eficiente el uso del espectro. La multiplexación TDD realiza una asignación temporal para los sentidos de comunicación, además del tiempo de guarda, esto hace que sea más sensible a los retardos y la latencia.

Algunas comparaciones:

  • En cuanto a la distancia FDD presenta mejores características a más largas distancias que TDD, de tal manera que TDD tiene más aceptación en escenarios donde las distancias son más cortas.
  • La propagación de las señales también presenta características diferentes, ya que TDD utiliza una sola frecuencia, esto hace que el canal como tal, presente las mismas características en las transmisión y en la recepción.
  • En FDD cada uno de los canales presenta diferentes características de propagación en función de la frecuencia utilizada.
  • La diferencia de frecuencias de los canales FDD, produce que la capacidad de cada canal dependa de la frecuencia asignada por las autoridades reguladoras.
  • En TDD es más sencillo hacer una distribución dinámica de la capacidad del downlink y el uplink con la finalidad de satisfacer las características de la demanda de recursos.

Las asignaciones de frecuencias que ha establecido el 3GPP para el uso de TDD y FDD se muestran la siguiente figura:

 

Figura # 1: Bandas de frecuencias para LTE FDD y TDD [1].

Las macroceldas no son muy eficientes [1] en el ámbito residencial debido a los problemas de penetración que se han mencionado en un artículo anterior, además, en las macroceldas se encuentran muchos usuarios y es más difícil proveer QoS a todos ellos. Por estos motivos los Proveedores de Servicios de Internet (ISP) han optado por la implementación de femtoceldas a nivel residencial con el fin de aumentar la calidad de los servicios brindados.

Las femtoceldas son estaciones base de baja potencia y bajo costo que proveen una alta calidad de los servicios celulares a nivel residencial, en este ámbito ofrecen una cobertura de aproximadamente 10 m [2], están diseñadas para integrarse de manera automática a las redes macrocelulares. Se integra con el operador móvil mediante una conexión de banda ancha, típicamente ADSL [2, 3], como puede apreciarse en la Figura # 1. Sin embargo también se puede realizar por medio de un enlace radio como se menciona en [4]. En General, la femtocelda hace que el tráfico del sistema celular proveniente del hogar, se desvíe por la conexión de banda ancha, liberando el consumo de recursos de la macrocelda.

 

Figura # 1: Femto-celda típica [3].

El espectro

En relación al espectro, LTE se torna bastante flexible permitiendo anchos de banda de 1.25MHz, 1.6MHz, 2.5MHz, 5MHz, 10MHz, 15MHz and 20MHz en el enlace descendente así como en el ascendente [4]. Además, soporta transmisión broadcast en modos solamente descendente y descendente-ascendente, por otro lado, los recursos de radio pueden modificarse para transmisiones broadcast según las necesidades del operador.

Los diversos escenarios que se presentan entre la interacción de diferentes proveedores de servicios y las otras redes de las que disponen, no se ven afectados en gran medida ya que los fabricantes han previsto la coexistencia dentro de la misma área geográfica de la EUTRAN con otro tipo de redes como 3G y la coexistencia entre operadores adyacentes, así también, es el caso del solapamiento en los límites de los países [4].

La eficiencia espectral que presenta LTE supera en buena medida a HSPA+, estos son los resultados de Telefónica [9], el estudio contempla un escenario de centros urbanos con alta densidad de edificios, configuración de antenas MIMO 2x2 para los dos casos y utilizando 64QAM como esquema de modulación, con esto, el estudio asegura que LTE supera en eficiencia espectral a HSPA+ por un 20% a plena carga. De la Figura #1 se deduce que para centros rurales o suburbanos las prestaciones de LTE serán mayores, además, a lo largo de la gráfica se denota la superioridad de LTE.

 

Figura # 1: Eficiencia espectral en función del uso de recursos [9].

Con tanta información que surge día a día entorno a la cuarta generación de telefonía móvil (4G), es muy común que los que nos gusta estar actualizados, nos interesemos por aspectos generales de la arquitectura de esta nueva tecnología. Pues bien, “System Architecture Evolution” (SAE) o también conocida como EPC (“Evolved Packed Core”) tiene su desarrollo a partir del año 2004 y hasta el 2009, durante ese tiempo se han desarrollado estudios que han permitido realizar los estándares que definen la arquitectura del núcleo de la red. Las especificaciones pueden verse de manera cronológica en la siguiente figura:

 

Figura # 1: Evolución de SAE [1].

Página 2 de 3